
An Incremental XSLT Transformation Processor for XML
Document Manipulation

Lionel Villard
Opéra Project

INRIA Rhône-Alpes Research unit
Zirst - 655 avenue de l’Europe - Montbonnot

38334 Saint Ismier Cedex
France.

Tel: +33 (0)4 76 61 53 82
Fax: +33 (0)4 76 61 52 07

lionel.villard@inrialpes.fr

Nabil Layaïda
Opéra Project

INRIA Rhône-Alpes Research unit
Zirst 655 - avenue de l’Europe - Montbonnot

38334 Saint Ismier Cedex
France.

Tel: +33 (0)4 76 61 53 84
Fax: +33 (0)4 76 61 52 07

nabil.layaida@inrialpes.fr

ABSTRACT

In this paper, we present an incremental transformation
framework called incXSLT. This framework has been
experimented for the XSLT language defined at the World
Wide Web Consortium. For the currently available tools,
designing the XML content and the transformation sheets is a
inefficient, a tedious and an error prone experience.
Incremental transformation processors such as incXSLT
represent a better alternative to help in the design of both the
content and the transformation sheets. We believe that such
frameworks are a first step toward fully interactive
transformation-based authoring environments.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors – Interpreters,
Optimization.
D.2.6 [Software engineering]: Programming Environments -
Interactive environments.

General Terms
Algorithms, Performance, Design, Experimentation,
Languages, Theory.

Keywords
XML, XSLT, Incremental transformations, Authoring tools.

1. INTRODUCTION
The advent of the XML standard at the World Wide Web
Consortium has triggered the definition of an incredible
amount of vocabularies in different areas of content
representations. Although these vocabularies are defined
separately and designed for a variety of purposes such as
content structure descriptions, layout languages, vector
graphics or mathematical formulas rendering, they can also be
inter-mixed in a single and same document. These
vocabularies share the same encoding language at the
syntactic level thanks to XML and are combined using

another XML companion standard called XML
Namespaces [12]. In most cases however, the content is
encoded using third party DTD’s while the resulting
documents are encoded using rendering vocabularies
such as XSL [7]. The result is an increasing diversity of
document classes and vocabularies and a lack of
authoring tools that copes with this diversity.

In this paper, we propose an incremental transformation
framework, called incXSLT, which can be used, in
particular, in the editing of XML documents through one
or many of its rendered presentations. These
presentations are described as XML markup and
produced usually through a transformation process. In
order to facilitate this operation in an interactive
authoring system, we propose to extend transformation
processors to be the basis of XML documents
manipulation. Authoring is one particular use of such a
framework and other applications can be the tuning of
XSLT transformations, the fast updated of large web
sites or the design of XML Schemas. This paper focuses
on how to achieve incremental updates to the
presentation after a source XML document modification
occurs.

The paper is organized as follows: in the following
section, we motivate the need of incremental
transformations and we discuss about related works. In
the fourth section, we describe the general architecture of
transformation based authoring systems. Then, we
identify the main characteristics of the XSLT
transformation language and we compare it with other
available languages. In the fifth section, we describe our
incremental transformation processor incXSLT that is the
central part of the proposed framework. This description
is completed with an evaluation of the current
implementation. In the last section, we give some
conclusions and draw some perspectives related to
editing transformation sheets.

2. GOALS
In the currently available authoring systems [2][19], the
only way to edit XML documents is through a lower-

Copyright is held by the author/owner(s).

WWW 2002, May 7-11, 2002, Honolulu, Hawaii, USA.
Copyright 2002 ACM 1-58113-449-5/02/0005…$5.00.

level text representation or at most through an enhanced
representation as a graphical tree. Some authoring tools [18]
give the user the ability to attach style to XML elements. This
association simplifies the authoring of a document by making
the XML content more accessible to the user through the
graphical interface. Even though, style sheets remain of a very
limited help when considering more complex presentations.
More recently, the <xsl>Composer [22] allows the authoring
of XSLT transformations by direct manipulation. However,
this tool has many lacks: in particular the transformation

process is executed from scratch after each modification
of the transformation sheet. The result is an increasing
processing cost proportional to the size of the document.

A presentation of an XML document is generally
obtained using the production process described in figure
1. An XML document, which can be composed of many
vocabularies, is transformed to a vocabulary closer to its
final presentation. The obtained document is then
formatted and graphically rendered to the reader.

Figure 1. Presentation process

In general, one cannot make strong assumptions about the
documents that are to be edited by the user, nor what the user
is trying to achieve with the XML content. For example, the
author may be willing to design a transformation sheet that
allows the production of the layout for a particular class of
documents. Due to the diversity of the source document
classes, it’s necessary to help the author creating
transformation rules that handles the rendering of the different
XML elements.

In the case of applications related to the content creation at the
source XML level, the incremental transformation framework
can help in achieving several functions. A first use can be the
design of a function that provides a graphical preview of the
document layout. These documents can be created from
scratch or, in a more productive manner, updated
incrementally after a modification in a source representation
of the document occurs. Another application can be the
deployment of XML content toward devices with different
capabilities and users with different preferences. In this case,
the transformation processor can be used to provide
navigation through the various presentations corresponding to
the different devices and users. The navigation can be
achieved simply by selecting the target device and user
profiles [5]. At the transformation level, this is equivalent to a
change in the transformation rules and parameters sets.

As we have seen, the transformation framework can make the
authoring much more efficient and reliable: the author can
check the content design directly on the final presentations.
But still, editing directly the source document remains an
inefficient, a difficult and an error prone task. We believe that
an additional step toward a much more comfortable edition of
XML documents is to get closer to an interactive approach
and to provide high level editing functions related to the
document domain.

One of the most important key aspects for the success of such
frameworks is related to performance. In order to be usable,
the transformation process must be fast enough for the user
operations. In particular, it is critical that modifications of the
source document or the transformation sheets are reflected
promptly to the user. In these situations, making
transformation programs incremental becomes a major issue.
Incremental changes allow controlling the scope of the
document changes without requiring a global re-evaluation of
the entire transformation. Controlled incremental updates are
capable of efficiently updating the result of a computation
when the source document or the transformation rules
changes slightly. Therefore, incremental change handling
becomes a valuable help for a user designing XML content or
adjusting the transformation sheets.

In this paper, we focus on the target document updates
occurring as a result of changes in the source document. This
paper does not cover reverse transformations required when
the changes are applied in the target document and are to be
reflected in the source document. Examples of application that
achieves such bi-directional changes can be found here
[15][18]. Compared to our framework, most of these
applications maintain these changes by restricting the source
and the target documents to have an almost identical structure.
Of course, this assumption is not relevant for XSLT-like
transformations where there are no constraints on the
transformations.

3. RELATED WORKS
In the field of programming languages, a significant amount
of work has been achieved on incremental computations [16].
In most cases, they either handle specific problems for
particular input changes in the programs, or at the other end
propose too general frameworks. Even though, some specific
techniques and frameworks have helped in the design choices
we have made for incXSLT. For example, selective re-
computation used also in [17] helped in the identification of
the rule fragments responsible for the modifications between
source and target elements. The second technique is based on
performance optimization based on intermediate result
caching [10]. In our case, we reused this notion of local
caches to allow execution state restorations for transformation
statements. However, one of the problems we encountered
with caches is the determination of the caches size. In the
particular area of incremental processing of XSLT
transformations, there is no experience on this subject
reported in our knowledge.

4. DESCRIPTION OF XSLT
4.1 Why XSLT?
In the literature, several transformation languages have been
proposed for a variety of purposes. Balise [4] for example, is a
script language in which some functions of tree manipulation
(creation and copy) are provided. Omnimark [7] is another
language more suitable for text streams programming. An
Omnimark program consists of rules that define events such
as general markup events produced when parsing an XML
document. XSLT [7] is a functional language especially
designed for XML document transformation. An XSLT
program or transformation sheet consists of transformation
rules (templates) associated with patterns. When a rule pattern
matches the source document being processed, the
corresponding rule is instantiated and creates as a result a tree
fragment.

The transformation power of these three languages is, in fact,
quite similar. XSLT has been designed as a side effects free
language. A function in a programming language is said to
have side effects if it makes changes to its environment, for
instance if it modifies a global variable that another function
can read. Functions that have no side effects can be called any
number of times and in any order. This property is crucial for
the implementation of an efficient incremental transformation
engine. As we will see later, restoring as fast as possible the
execution state (processor context for XSLT) for a given
statement (or instruction) is a key point for efficient
incremental transformations. Computing this state for a
language with side effects is more expensive in time and
space than a side effect free language [11][1].

In order to present our incremental transformation processor,
the following section describes the concepts related to XSLT
in the context of incremental processing.

4.2 Main concepts
As described earlier, XSLT is a language specifically
designed for transforming the structure of an XML document.
The transformation processor (see figure 2) takes as input an
XML document and transforms it by finding first a
transformation rule matching the root node. In a second step,
it executes sequentially the instructions contained in the rule.
The result is called the target document.

Figure 2. Transformation process

4.2.1 An example
Before getting into the details of the incXSLT processor, we
give first a working example that we will use throughout the
remaining part of this paper. Consider the following source
fragment document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<article>
 <title>Incremental transformation</title>
 <artheader>
 <authorgroup>
 <author>
 <firstname>Lionel</firstname>
 <lastname>Villard</lastname>
 </author>
 <author>
 <firstname>Nabil</firstname>
 <lastname>Layaïda</lastname>
 </author>
 </authorgroup>
 <date>28 October 2000</date>
 </artheader>
 <section>
 <title>Introduction</title>
 <para>…</para>
 </section>
 <section>
 <title> Toward a WYSIWYG edition of XML
Documents</title>
 <para>…</para>
 <section>
 <title>An example</title>
 <para>…</para>
 </section>
 <section>
 <title>Process overview</title>
 </section>
 </section>
</article>

This XML document is an instance of the docbook [13]
document class. It represents an article composed of global
data, gathered under the artheader element, such as the
author names. The content of article is organized in sections.
A possible presentation on the screen is illustrated in figure 3.
It is followed by the corresponding source code of the target

representation as HTML. Figure 3 shows the table of content
of the article below the first author’s name and the article’s
title. At the bottom of the screen, the complete list of authors
is rendered, followed by the number of higher-level sections
and the document last modification date.

Figure 3 A presentation of a docbook document

<html>
 <body>
 <p align="center">Lionel Villard presents</p>
 <h1 align="center">Incremental transformation</h1>
 <h2 align="left" style="padding-left=0px">1.
Introduction</h2>
 <h2 align="left" style="padding-left=0px">2.Toward a
WYSIWYG edition of XML Documents</h2>
 <hr>
 <table width="100%" border="1">
 <tr>
 <td>Lionel Villard and Nabil Layaïda</td>
 <td>Nb uppest sections : 2</td>
 <td>Last modification : 28 October 2000</td>
 </tr>
 </table>
 </body>
</html>

The presentation above is the result of the transformation
applied by the transformation sheet given in annex A. A
fragment of the execution tree of this transformation is given
in figure 4. At the beginning of the transformation, the
following template rule is instantiated on the document root
element:

8. <xsl:template match="article">
9. <html>
10. <body>
… <!-- header generation : “Lionel Villard

 presents” -->
17. <h1 align="center"><xsl:value-of

 select="title"/></h1>
18. <xsl:apply-templates select="section"> …

</xsl:apply-templates>
… …
22. <table border="1" width="100%">
… …
28. </table>
29. </body>
30. </html>
31. </xsl:template>

In the beginning of the transformation, html and body
elements are copied in the target, followed by the header. The
title is presented inside an h1 tag. Then, the table of content is
generated thanks to the instruction line 18. This instruction
selects sections to be processed (see below). The html table
containing the full list of author names, the number of higher-
level sections and the date of the last modification are then
generated.

When processing a section, a template that best matches the
section node type is searched in the transformation sheet. In
our case, the following template is instantiated with a
parameter that will be used to indent the section entries. The
current source node is the section node being instantiated.
This node will be used to evaluate expressions. For example,
the expression title line 53 retrieves the title of the section
being instantiated.

33. <xsl:template match="section">
34. <xsl:param name="indent">0</xsl:param>
35.
36. <xsl:variable name="heading">
… <!-- Depending on the section depth, choose a

 heading tag -->
43. </xsl:variable>
44.
45. <xsl:element name="{$heading}">
46. <xsl:attribute name="style">padding-left=
47. <xsl:value-of

 select="$indent"/>px</xsl:attribute>
… …
51. <xsl:number value="position()" format="1."/>
… …
53. <xsl:value-of select="title"/>
54. </xsl:element>
55.
56. <xsl:if test="count(ancestor::section) <

 $toc.depth - 1">
57. <xsl:apply-templates select="section">
… …
61. </xsl:if>
62. </xsl:template>

A variable named heading is firstly created (line 36). Its
value contains the name of the heading tag that depends on
the section depth (h2 for level 0, h3 for level 1, etc.). Then an
element with the name contained in the heading variable is
generated (line 45). An attribute named style is added to this
element. Its value defines a left padding of indent pixels. The
content of the element previously generated corresponds to
the position of the section relative to its parent (line 51). It is
followed by the title content of the section (line 53). Then,
depending on the section depth (line 56), children sections are
processed.

Now that we have presented the principle of this
transformation sheet, we illustrate the transformation through
a simple authoring scenario. For example, think of an author
that modifies the source document by inserting a new section
element to article element in the previous example. In this
case, the consequences on the target document are the
following: an h2 element must be generated with the
corresponding number, and depending on where the section is
inserted, the following section numbering must be updated.
The counter of higher-level sections must also be updated in
the html table. In summary, the list of instructions that need to
be re-executed is the following:

• The apply-templates instruction that select section
elements (line 18): the whole template that matches
section elements must be applied with the new inserted
section as the source node.

• The number instruction for all sections following the
newly inserted section element (line 51).

• The second cell of the html table (line 25).
In the remaining part of this paper, we will explain how to
determine the list of previous instructions, and how to update
the target document.

4.2.2 Overview of the incremental processing
One of the goals of an incremental processor is to change only
target document fragments that need to be updated. At the
transformation sheets level, this is equivalent to selecting
instructions that need to be re-executed. Source nodes for
which this re-execution applies must also be identified. The
method to perform selective transformation relies mainly on
XPath [23] expression structure analysis. This analysis must
be carried out as a pre-processing stage of the incremental
session. Then, for each of theses instructions, their execution
state must be restored first in order to be able to execute them.
As the state must be restored as fast as possible, caching
techniques are used in incXSLT. As stated previously, one of
the problems we have been facing is the determination of the
minimum data that needs to be saved. The instruction is
executed using the incremental version that we have
developed instead of their non-incremental counterpart
available in the XSLT batch processors.

4.2.3 Expressions and patterns
In XSLT, a number of instructions use expressions in attribute
values. An expression is generally composed of one or many
path expressions. A Path expression defines a navigation path
through the navigation tree. When the path expression is
evaluated, the result is a set of source nodes. For example, the
expression artheader/authorgroup (line 24) is a path
expression. The evaluation of this expression is a set of
authorgroup elements with artheader element as a parent.

The evaluation of such expressions depends on a static
context and a dynamic context [9]. For incremental
transformations, only the dynamic context need to be restored
each time an instruction is executed. This context depends on
the state of the processor at the time the expression has been
evaluated. This context consists of:

• The current values of all variables that are in the scope of
the expression.

• The current node: this is the node in the source document
that is currently being processed.

• The current node list: when an apply-templates or for-
each instruction are used to process a list of nodes, that
list becomes the current node list.

• The current position indicates the position of the current
node in the current node list.

The expression syntax is also used to specify patterns. A
pattern is a particular expression with some restrictions:

• The result type of the pattern evaluation must be a node
set.

• Only child and attribute axes are permitted.
During an incremental session, the instructions that need to be
re-evaluated are those whose associated expression(s) can
potentially change. In particular, this occurs when an attribute
is modified in the source document. In the general case, the

result of an expression can change either because its
evaluation context and/or the result of expression’s location
paths has changed. For example, the instruction <xsl:value-of
select=”position()”> needs to be re-evaluated when the
position of the current node changes. In this case, the position
of current node changes only when a section is added or
removed before the current node.

As said earlier, a path expression selects a node-set. In most
cases, the nodes types included in this node-set can be
determined without the knowledge of the dynamic context.
For example, the result of the expression article/section
depends only on the article and section elements. By taking
advantage of such a property, we use it to make a first filter to
remove unnecessary instructions that does not need to be re-
evaluated.

In fact, the nodes in the selected node set match a particular
pattern. This pattern is obtained from the path expression. For
this pattern, it is necessary to remove all dynamic context
references. This operation can be quite complex. For example,
the reference of the toc.depth top-level parameter in the
expression line 56 (count(ancestor::section) < $toc.depth -
1) must be de-referenced in order to analyze the parameter
value. As the toc.depth parameter does not contain any
location paths and any dynamic context references, this
expression matches only the pattern section. More complex
cases can occur, especially when the expressions contain
references to template’s parameter.

Compare to the XSLT definition of patterns, some restrictions
were lifted in order to remain closer to the definition of this
node set during the conversion. All the possible axes were
permitted except ancestor, ancestor-self, following and
preceding. The restriction of axes in XSLT has been
introduced for performance reasons and the goal was to allow
efficient pattern matching. But in our case, pattern matching
occurs relatively less frequently than during a batch
transformation. Secondly, having a more accurate selection in
an incremental transformation allows minimizing the
instructions that need to be re-evaluated. However, as the
selection must remain reasonably efficient, ancestor,
ancestor-self, following and preceding axes are still not
permitted because of their poor performances. For example,
testing a node against the pattern slide/ancestor::title
requires a navigation through all the descendants of the
currently modified element (of type title) in order to retrieve
an element of type slide.

Given that the dynamic context cannot be known beforehand,
in particular local variable values, their use in patterns is
forbidden. Later in this paper the conversion algorithm will be
given in more details in section 5.1.

4.2.4 Instructions
During an incremental transformation session, the dynamic
context must be restored in order to perform the newly
introduced modification. The target context of the resulting
document must be restored also. In order to understand how
the different XSLT instructions affect the transformation
process, they have been classified under a set of categories.
This will help later in defining the data that needs to be stored
in the cache. Global instructions (attribute-set, namespace-
alias, etc.) are static parameters executed at the beginning of
the transformation and not depend on the source document.
Modularization instructions (import, include, etc.) define

how transformation sheets are physically organized, so they
do not depend on the source document. Variables (variable,
param) instructions allow defining global or local variables
and template parameters. The variables are a significant part
of a processor context (see the previous section). Flow
instructions (apply-templates, for-each, if, etc.), allow the
control of the transformation execution and in particular the
choice of source node to be instantiated (apply-templates
instruction). Producer instructions (value-of, element, etc.)
generate fragments of the target document. These instructions
are the bridge between transformations and the target
documents and are very valuable in restoring the target
context.

4.2.5 Execution flow tree
During a transformation, the instructions are executed
sequentially. These instructions will perform some actions
and depending on the previous classification some data will
need to be stored. The execution flow tree is a representation
of the instructions execution. Many systems have used
variants of the execution flow tree mainly in the context of
side-effect languages [1][11]. The goal of theses systems is to
provide execution backtracking facilities in order to help
program debugging: during the debugging phase, the user can
undo the execution of some instructions, change program
inputs and re-execute the program incrementally. The
incremental execution relies on the tracing of program
execution to create history logs (list of couples (line, variables
values)). From theses logs, the memory state can be restored
and the re-execution can be achieved. The main problem in
these systems is that the time and space costs can be
prohibitive. In the transformation context, the problem varies
according to the following aspects:

• The execution of the transformation is generally
bounded. The size of history is much smaller.

• Not all the execution history needs to be stored. As the
language is side effect free, restoring dynamic context
such as variable values can be easily and rapidly
achieved.

• The incremental transformation takes place after an
entire initial transformation has been performed.

• The modification of transformation sheets (the program)
during the incremental session is possible.

In our system, when the user starts a transformation session,
the execution flow tree is built in a batch mode first. In order
to update incrementally the source document or the
transformation sheet, we need to determine exactly what to
store in the tree. Storing all of the expression evaluations, the
template instantiated for a source node and the links to the
target document would require a huge amount of memory.

After an editing operation, some instructions need to be re-
executed for a given source node. If we suppose that the
processor is able to determine this set of instructions,
executing them would require the minimal processor context
(the part which affects their execution) as well as the target
context. In order to set the processor context and the target
context from any instruction we need to traverse up the
execution flow.

Figure 4 represents a fragment of the transformation described
earlier in section 4.2.1.

Figure 4. The execution flow tree of paper example.

The execution flow tree structure is composed of so-called
execution nodes. Execution nodes of type flow contain the
value of their associated expression. For instance, apply-
templates execution nodes have template nodes as direct
children. Template nodes have links to the source nodes.
Therefore, from apply-templates nodes we can retrieve
source nodes that composed the context node list. Producer
nodes contain data related to the target tree. This data will
serve to restore the target context. For example, the
instruction element has a link to the element it generates. For
a character producer such as value-of instruction, only the
number of generated characters needs to be stored. Execution
nodes that really need to be stored depend on the incremental
execution optimization used during the incremental session
(see section 5.2).

The data structure presented here allows having at any instant
of an incremental transformation session the source and target
contexts. Even if we need some extra processing to obtain for
example, variable values, this data structure is the key data
representation of our incXSLT incremental processor.

5. INCREMENTAL
TRANSFORMATION
In this section, we describe how to select the instructions to be
re-evaluated. This selection is illustrated through the example
given in section 4.2.1. After that, we show how the processor

updates the target document by incrementally executing the
transformation instructions.

5.1 Re-evaluation rules
After the source document has been modified, the incremental
processor determines which instructions need potentially to be
re-evaluated. This step relies on the preprocessing of re-
evaluation rules: each re-evaluation rule consists of a pattern
associated with a list of instructions to be re-evaluated. When
a source node matches the pattern, then the list of associated
instructions is likely to be re-executed. For instance, the
instruction <xsl:apply-templates select="section"/> (line
18) will never be involved in the insertion of a title element.
In contrary, when a section element is added, this expression
can possibly be re-evaluated (depending on the depth level of
the section). This basic selection of instructions to be re-
evaluated can be enhanced. For instance, by taking into
account that the expression is declared in a template that
matches only article elements. In this case we can more
accurately say if the apply-templates instruction needs to be
re-evaluated. The apply-templates instruction will be
executed only for nodes that match the article/section
pattern.

The list of re-evaluation rules is built by considering all the
expressions in the transformation sheet. Each expression is
converted to a set of patterns and for each pattern a re-
evaluation rule is created with the corresponding instruction.

In the next section, we describe how to implement a basic
selection mechanism. Then we propose some optimizations
based on context declaration, and variable de-referencing.

5.1.1 Basic selector
As said earlier, the creation of re-evaluation rules set from an
expression can be quite complex. It consists of the
identification of patterns that matches source nodes sensitive
to the modification of the expression’s result. These patterns
must not contain dynamic processor context references, such
as variable value and context size. In the following, we first
consider the conversion of expressions without giving details
of how location path conversion is achieved. Location path is
introduced gradually. First, we describe location path
conversion without considering predicates. Then, a more
general approach including predicates is given. At the end of
this section, we consider the case where template instantiation
must be re-considered after a source modification.

5.1.1.1 Expression conversion
An expression is composed of operations, functions, variables
and basic objects. The conversion of each of these
components relies on the following informal algorithm:

• Operations such as and, or, equals generates patterns
corresponding to those produced by the operation
arguments. For example, the expression count(section)
or position()>3 generates two patterns: section and
node(). The number 3 does not generate patterns (see
bellow).

• Functions:

• Functions that use the dynamic context, such as
position() or last() functions, must be re-evaluated
when the current node list or the current node
position changes. At this stage, as no additional
information is provided, this kind of functions are
replaced by the node() pattern. In section 5.1.3, we
describe a basic optimization operation based on
context-awareness.

• Functions conversion with location paths as
parameters produces re-evaluation rules
corresponding to those of the location paths
conversion. For example, count(section) expression
is converted to section pattern.

• The other functions do not generate any patterns. For
example, the expression floor(43/2) never needs to
be re-evaluated. Therefore, it does not generate
patterns.

• A variable reference generates the node() pattern. It
corresponds to the values the variable can take, in
particular a node set (represented by node() pattern).

• Basic objects, such as number, string or boolean do not
generates any patterns.

5.1.1.2 Location path without predicates
conversion
The result of the location path is obtained by querying source
nodes during each step of the path traversal. Consequently, as
the result of the location paths depends on the results of the
intermediate node sets, a pattern is generated for each of these
intermediate node-sets. For example, the evaluation of
artheader/authorgroup location path can change if an

artheader element or an authorgroup element are added or
removed in the source document. In this case, two re-
evaluation rules are created for this particular expression.

In addition, the re-evaluation of an expression is not only
required when the result node-set change. In fact, when
expressions are converted to the string type, the evaluation of
the expression is the list of text nodes descendants of the first
node in the node-set. Therefore, a pattern is added in order to
reflect a modification of these text nodes. For example, the
expression title (line 16), as specified in the value-of
instruction, is converted to a string type. So the conversion
generates two patterns: title and title/descendant::text().

Taking into account axe relationship between steps can
provide a basic optimization. In the previous example, the
addition of an artheader element changes the path result only
if this later contains an authorgroup element as a child. In the
same manner, the addition of an authorgroup element
changes the evaluation of the location path only if his parent
is an artheader element.

5.1.1.3 Location path with predicates conversion
To identify if the evaluation of predicates can change after a
source modification, they are converted in the same manner as
described in the previous sections. The predicate evaluation is
achieved in the context determined by the path step attached
to the predicate. As a consequence, all the functions, which
require the dynamic context (such as position()), can be
converted as is. Only variable references must be converted.

5.1.2 Instantiation re-consideration
The execution of the apply-templates (and apply-imports)
instruction, more than the nodes selection, must search for the
template that best matches every selected node. This search
operation (the instantiation process) may be reconsidered
when a document source is modified. For instance, consider
the following template definitions:

<xsl:template match="section[title]"> ... </xsl:template>
<xsl:template match="section"> ... </xsl:template>

The instantiation of a section element can change when a title
element is added (or removed) to a section element. So an
apply-templates instruction that has selected section nodes
need potentially to be re-evaluated. In general, the
instantiation process must consider all the templates defined
in the transformation sheets. Therefore, each time the source
document is modified, the entire previous instantiations must
be reconsidered. To avoid this cost overhead, we take into
account the fact that, most of the time, only some template
rules can be instantiated for a given apply-templates
instruction. From theses apply-templates/template
dependencies, the instantiation processes related to a
particular apply-templates instruction can be limited to a
subset of the template rules. In summary, a re-evaluation rule
is added for each template pattern that depends on an apply-
templates instruction. Notice that the computation of apply-
templates/template dependencies can also be used to
enhance the instantiation processing performance during a
batch transformation.

Formally, the problem of computing apply-
templates/template dependencies can be formulated as
following:

Let Na the node set that the apply-templates instruction a can
select. Let Nt the node set that the template rule t can
instantiate. The template rule t is said dependent on the apply-
templates a if and only if a node n belonging to Na that
belong to Nt exist. Formally:

T depends on A ⇔ ∃ n ∈ Na / n ∈ Nt ⇔ A match T

In practice, the way to determine such dependencies is to
perform a pattern matching between the apply-templates’s
expression (and not the result of the expression) and
template’s pattern. Compared to classical tree pattern
matching, the pattern matching is achieved here between two
node-sets (represented by a pattern) and not between a node
and a pattern.

In the following, we give some formulas in order to perform
pattern matching between expressions and patterns. We do not
present an exhaustive case study. We rather focus only on the
child and attribute axes cases.

Figure 5. General syntax of path expressions (without

predicates).

The following formulas are written using the apply-
templates’s expression general syntax, as illustrated in Figure
5.

An expression matches a pattern by respecting the following
rules:

• Node test constructor:

• nodeTesta match node()t ⇔ true

• nodeTesta match text()t ⇔ ∃n ∈ nodeTesta /
type(n)=text()

• nodeTesta match nameTestt ⇔ ∃n ∈ nodeTesta /
type(n)=element() ∧ (name(n) = name(nameTestt) ∨
name(nameTestt) = ‘*’ ∨ name(n) = ‘*’)

• Axe constructor:

• axea::nodeTesta match child::nodeTestt ⇔ nodeTesta
match nodeTestt ∧ axea = child

• axea::nodeTesta match attribute:nodeTestt ⇔
nodeTesta match nodetestt ∧ axea = attribute.

• Step constructor:

• step2a/ axea::nodeTesta match step2t/axet::nodeTestt
⇔ axea::nodeTesta match axet::nodeTestt ∧ step2a
match step2t

• Union constructor:

• locationPatha2 | locationPatha1 match locationPatht1
⇔ locationPatha2 match locationPatht2 ∨
locationPatha1 match locationPatht1

In the previous sections, we have presented a basic selector
that allows selecting the instructions to be re-evaluated for a
particular node modification. This set of instructions is not
minimal in that it contains instructions that are not necessary
in the re-evaluation. In the following section, we will describe
two techniques that we have introduced to minimize the
number of these instructions.

5.1.3 Optimizations
5.1.3.1 Context awareness
The first optimization technique is the context declaration
awareness. This optimization relies on the context of the
instruction declaration. Three levels of this context are
identified:

• The context inside a predicate: when converting a
predicate, relative location paths inside the predicate are
evaluated from the predicate’s step. Such predicates are
then prefixed by the left part of the predicate’s step.

• The context inside the template declaration. Each
relative pattern is evaluated on nodes that the template
(or for-each instruction) has matched. Therefore, adding
the template pattern as a prefix can refine relative
patterns found during the basic selection. For instance,
the section pattern associated to the apply-templates
instruction line 18 can be transformed to article/section
pattern.

• The context outside the template declaration. In some
cases, a template can be instantiated by a limited number
of apply-templates instructions (apply-
templates/templates dependencies: see section 5.1.2).
This information can be used to refine the re-evaluation
pattern. Formally, let at1, at2, … atn the apply-templates
instructions that can instantiate the template t. Let p1, p2,
… pn the relative patterns of the template’s instructions.
Let pat1, pat2, …patn the (recursive) pattern conversion
attached to at1, at2, … atn apply-templates expressions.
Therefore, p1, p2, … pn patterns can be refined by the
following patterns: (pat1| pat2 |… | patn)/p1, (pat1| pat2 | …
| patn)/p2, … (pat1| pat2 |… | patn)/pn. This expression of
patterns must then be transformed to its canonical form.
The canonical form allows the identification of
equivalent patterns; which in turn allows removing
redundancies from the pattern list.

In comparison with the basic selection, all the patterns
obtained now are more precise. Furthermore, they have
generally less associated instructions to be re-evaluated. For
instance, in the basic selection, when the title of a section is
modified, eight instructions need to be re-evaluated (lines 18,
24, 51, 57, 69, 17, 48 and 53). While with the enhanced
selection, we have just five that need to be re-evaluated.
Moreover, this selection is able to distinguish between a
section inserted in another section and a section inserted in an
article.

5.1.3.2 Variables
The second optimization is related to variables. In some
cases, the value of variables is just limited to a subset of
values. In the example given in the annex A (line 36), the
value of the variable named heading depends only on the
number of section ancestors of another section. So the value
of the attribute named name (line 45) need to be re-evaluated
only if a section element is added (or removed) in the source

document. By de-referencing the variables that support de-
referencing (with no reference to a parameter), it’s then
possible to refine the pattern obtained by a conversion of an
expression with a variable. A more general solution that
covers parameter references is under consideration, in
particular, by using template/apply-templates
dependencies.

5.1.4 Synthesis
In the example given in section 4.2.1, we gave the example of
a modification of the source document by inserting a new
section element to the article element. The result of the
selective re-computation, obtained by applying the enhanced
selector, corresponds to the instructions at lines 18, 25, 45, 48,
and 51. Compared to the instructions that ideally needed to be
re-computed (see section 4.2.1), two additional instructions
need to be re-evaluated. In fact, the instructions at lines 45
and 48 are re-evaluated because they contain a variable
reference. If we consider that we had 18 instructions that
compose the transformation sheet, our selection method
reduced the size of the instructions under consideration to five
instructions.

In general, obtaining an efficient incremental transformation
depends on the manner the transformation sheet has been
written. For example, if the transformation sheet programmer
limits the use of wildcards in expressions, the performance of
the incremental processor will increase substantially. This is
due to a more accurate selection. In general, the
transformation sheet design affects not only the incremental
transformation but also the batch transformation.

As the list of instructions to be re-evaluated is known
beforehand, some hints on the incremental transformation
processing cost can be obtained. For example, if the
instruction list to be re-evaluated is short and if it does not
contain instructions of flow type, the re-evaluation is likely to
be very fast. Having performance hints is very valuable in an
authoring environment. For instance, when a character is
typed on the target, a high priority can be set on instructions
that update the corresponding target (instruction with a lower
cost). The slower instructions that allow propagating this
change in the document can be executed with a lower priority.

5.2 Incremental execution
5.2.1 Basic process
Thanks to the list of re-evaluation rules obtained using the
selection introduced in the previous section, the instruction to
be re-evaluated can now be determined. This is achieved by
applying a pattern matching between re-evaluation rule
patterns and the node currently being modified. Instructions
associated to a pattern that matches that node need to be re-
evaluated.

The processing of these instructions is achieved by
performing a depth first traversal of the execution flow. When
an execution node is about to be traversed, depending on the
execution node type, a specific action is executed:

• Flow. If the instruction needs to be re-evaluated, then it
is executed incrementally as described in the algorithm
below for the apply-templates instruction.

• Producer. If the instruction needs to be re-evaluated,
then it is executed. Otherwise, the target context is only
updated. For character producer instructions, the number

of previously generated characters is increased. For
element producer instructions, the number of characters
is set to zero and the associated target node is set to be
the current one.

• Variable. The variable declaration is pushed on a
variable stack. Its value is not computed but later when
needed.

• Parameter. The parameter declaration is also pushed on
the variable stack and its value computed when needed.

At the end of the traversal of an execution node, similar
actions are performed at the node level: variables declarations
are popped from the stack, etc.

When an instruction is executed, the processor starts by
computing the value of variables needed by the expression.
Then, depending on the instruction, an incremental algorithm
is executed. Figure 6 gives the algorithm that allows the
incremental execution of the apply-templates instruction.

nodeList <- Evaluate select expression
If (sort instruction specified)
 sort(nodeList)
End If
For each Node in NodeList
 If (node ∉ previousNodeList)
 // The source node was not selected during the
previous transformation
 Execute apply-templates instruction with Node as
context
 Else
 // Test if the template matching has changed
 template <- findTemplate(node)
 If (template = previousTemplate(node))
 // Same template
 If (not same position as previously)
 // The generation order has changed
 changeTargetPosition()
 End If
 Incrementally execute children with Node as context
 Else
 // Not the same template
 Destroy previously generated target
 Execute apply-templates instruction with Node as
context
 End If
 End
End For

Figure 6 The incremental algorithm for the apply-
templates instruction

The algorithm for the for-each instruction is quite similar,
except that there is no template matching needed. As a
consequence, the test that checks if template matching has
changed is not used. In contrary, for the apply-imports
instruction the algorithm contain only that test. For the value-
of instruction, the new characters replace the previously
generated ones.

As the target document is traversed in parallel to the
execution flow tree, producer execution nodes don’t need to
be stored. Therefore, memory consumption is substantially
reduced (see evaluations in section 6).

5.2.2 Optimizations
In this section, we present two optimizations that can improve
the performance of the incremental processor.

The first one is the source nodes selection. When an
instruction is to be re-executed, it is re-executed for all
instantiated source nodes. For template rules that are
instantiated frequently, the number of re-executions can be
more than necessary. In some cases, it is possible to prevent
some superfluous executions: for instance, the instruction line
53 need to be re-evaluated only for parent node of the editing
node and not for all nodes instantiated by the corresponding
rule.

To achieve this selection, depending on what triggered the
instruction re-evaluation, the selection will be achieved in two
manners. First, the result node set of the location paths that
composed the expression has changed. In this case, the list of
source nodes can be easily obtained in the same manner as the
expression evaluation. Starting from the editing node, the
location path expression is executed in the reverse order (from
right to left) until the end of path. The result is a set of source
nodes. For example, the instruction line 56 needs to be re-
evaluated when a section element is added or removed.
Source nodes for which this instruction must be re-evaluated
is given by the evaluation of the reverse expression
section/descendant::section. The context node for
evaluating this expression is the edited section element.
Obviously, this optimization is possible only if the expression
does not contain dynamic references.

Second, the list of nodes in the context (context node list) has
changed. It must be restored (in the same manner as
incremental execution of apply-templates instruction). If the
edited node appears in the context node list (or do not appear
anymore), then the expression must be re-executed for the
entire source nodes contained in the context node list. As the
context node list cannot change without an execution of
apply-templates and for-each instruction, computing the list
of source nodes can be achieved during the execution of these
instructions.

The second optimization is the pattern inclusion. In order to
identify the list of instructions to re-evaluate, a pattern
matching is performed on the entire re-evaluation rules set. To
avoid such an overhead, each time a pattern is converted from
an expression, the expression’s instruction is added to the re-
evaluation rules that include the new pattern. A pattern P1
includes another pattern P2 when all nodes that matches
pattern P2 match pattern P1. So, in order to find the list of
instructions to re-evaluate, it is sufficient to find the first
pattern that matches. Algorithms described in section 5.1.2
can be used to perform pattern matching between patterns.

The incremental transformation with these optimizations
allows updating, in a reasonably responsive application, the
target documents after a change in the source document.

6. EVALUATION
The techniques, presented earlier, allow the implementation of
incremental transformation processors. They have been
partially integrated in the Xalan batch processor from the
Apache Foundation Software [3]. The basic selector,
presented in section 5.1.1, has been almost completely
implemented. In the current version of our application, it
supports a subset but significant part of the expression

constructors. The context awareness inside the template
declaration optimization, presented in section 5.1.3, has been
implemented. An extended pattern matching that takes into
account the new pattern definition, introduced in section
4.2.3, has also been implemented. The incremental execution
process traverses the execution tree. Variables and parameters
are evaluated during this tree traversal.

In order to evaluate our current implementation of the
incremental processor, some measures of the costs in terms of
speed and memory space requirement have been achieved.
They are summarized in table 1 and table 2.

Table 1. Speed of the transformations applied to Norman
Walsh’s docbook transformations sheet.

 Batch Dummy Change
article title

Insert
section

Number of
instructions
to re-
execute

N/A 0 795 819

Time to get
instruction
to re-
evaluate

N/A 0 80ms 80ms

Variables
computed

6572 6572 6572 6572

Variable
access count

10279 6899 6899 6983

Overall
timing /
ratio

4,5s 1 2,8s 0.62 2,8s 0.62 2,9s 0.64

Table 2. Speed of the transformations applied to extended

version of transformation sheet in Annex A.

 Batch Dummy Add an
author

Insert
section

Number of
instructions
to re-execute

N/A 0 18 20

Time to get
instruction
to re-
evaluate

N/A 0 <10ms <10ms

Variables
computed

133 133 133 133

Variable
access count

1563 0 25 36

Overall
timing /
ratio

2,3s 1 0,1s 0.04 0,2s 0.08 0,3s 0.13

Table 3. Memory size of the transformations (Norman
Walsh’s docbook transformations sheet).

 Normal
document

High document

Source Document
(Kbytes) 193 505

Target document
(Kbytes) 224 596

Execution flow tree
(without target)
(Kbytes)

106 259

Execution flow tree
(with target)
(Kbytes)

153 364

Ratio

(source + target) /
execution

36% 33%

These tables show that incremental transformations are very
promising in terms of the overall system’s performance. For
speed consideration, we have measured some particular
operations such as appending an author in the working
example. The result is that most of the changes remain within
a reasonable processing time. This is very important since
incremental processors are used in an interactive mode and
have to remain responsive. The memory usage is not
prohibitive too. The overhead that we measured, that is
mainly due to the size of the execution flow tree, represents a
small fraction of the memory occupied by the source and
target documents. We have applied our measures to two
docbook documents, using Norman Walsh’s transformation
sheets [21] to produce HTML documents. These
transformation sheets contain 1236 templates and are not
optimized for incremental processing. It contains a lot of
generic expressions and variables. Consequently, the number
of instruction to re-evaluate is widely over-estimated. And, a
lot of processing time is waste because of systematic variable
values computation during tree traversal, which represent
close to 100 percent of incremental process. We expect that
the implementation of optimizations such as template context
awareness and variable de-referencing (see section 5.1.3) will
strongly improve incremental performance for such
transformation sheets.

A second evaluation has been performed on a little
transformation sheet (50 templates) applied to same
documents. This transformation sheet, which is an extension
of the transformation sheet given in annex A, has been written
using few variables and no wild cards. Consequently,
instructions that need to be re-evaluated are determined more
accurately than Norman Walsh’s transformation sheets.

7. CONCLUSION AND PERSPECTIVES
In this paper, we have presented an incremental
transformation framework called incXSLT. This framework
has been experimented for the XSLT language from the
World Wide Web Consortium. XSLT has gained a very large
acceptance and is currently deployed in several systems such
as Web browsers, publishing tools and database systems. In

these systems, the XML content together with the
transformation sheets are designed in a batch mode.
Transformation sheets designers usually debug their sheets
using batch processors. This operation is tedious since it does
not allow identifying precisely the error sources. In addition,
it prevents the identification of the immediate effect of source
document or transformation sheet changes in the destination
document. Incremental transformation processors such as
incXSLT represent a better alternative the design of both the
content and the transformation sheets. It is a first step toward
full blown interactive transformation-based authoring
environments.

In the short term, we plan to extend the implementation to
support most of the selector optimizations described in section
5.1. The goal is to cover incremental transformations closer to
real world source documents and transformation sheets. The
second goal is to allow a more flexible editing of the
transformation sheets. For a lack of space, we have not
detailed this aspect in the paper. Nevertheless, the execution
flow tree data-structure remains the central vehicle of the
transformation updates.

In the future, we expect that the specification of
transformation sheets will remain a difficult task. We think
that, in the longer term, it could be useful to identify common
transformation schemes in order to make them available as
building blocks. Ideally, making the composition of such
building blocks available through a GUI interface will help
greatly in making transformations accessible to a wider range
of users. A second goal that we need to address is the problem
of reverse transformations. The reverse transformation
problem can be formulated as follows: for a given target
modification, the problem is to find all the modifications to
apply on the source document to obtain that particular
modification. This allows suggesting to a document author the
locations in the source document where to apply a change in
order to have that target modification.

8. REFERENCES
[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford,

“An execution-Backtracking Approach to
Debugging”, IEEE Software, pp. 21-26, May 1991.

[2] Altova, “XML Spy 3.0”,
http://www.xmlspy.com/, 2000.

[3] Apache XML project, “Xalan”, 2000.
http://xml.apache.org/xalan/index.html

[4] Balise, “Balise 4”, 2000.
http://www.us.balise.com/products/balise/index.ht
m

[5] “Composite Capabilities/Preference Profiles:
Requirements and Architecture”, M. Nilsson, J.
Hjelm and H. Ohto, W3C Working Draft, available
at http://www.w3.org/TR/CCPP-ra/, 21 July 2000.

[6] “Document Object Model (DOM) Level 2 Views
Specification”, W3C Recommendation, available at
http://www.w3.org/TR/DOM-Level-2-Views/, 13
November 2000.

[7] “Extensible Stylesheet Language (XSL) Version
1.0”, S. Adler and Co, W3C Working Draft,

available at http://www.w3.org/TR/xsl/, 18 October
2000.

[8] C. Hoffmann and M. O’Donnell, “Pattern
Matching in Trees”, Journal of the Association for
computing Machinery, vol. 29, n°1, pp 68-95,
January 1982.

[9] M. Kay, ”XSLT Programmer's Reference”, Wrox
Press, 2000.

[10] Y. A. Liu, “Efficiency by incrementalization: An
introduction”, Higher-Order and Symbolic
Computation, 13(4), 2000.

[11] R. H. B. Netzer and M H. Weaver, “Optimal
Tracing and Incremental Reexecution for
debugging Long-Running Programs”, In
Proceedings of the ACM SIGPLAN '94 conference
on Programming language design and
implementation, 1994.

[12] "Namespaces in XML", T. Bray, D. Hollander, A.
Layman. W3C Recommendation, available at
http://www.w3.org/TR/REC-xml-names, 14
January 1999

[13] Oasis, “Docbook”,
http://www.docbook.org.

[14] Omnimark, “Guide to OmniMark 5”, 2000.
http://www.omnimark.com/develop/om5/doc/

[15] V. Quint, C. Roisin and I. Vatton, “A Structured
Authoring Environment for the World-Wide Web”,
Proceedings of the Third International World-Wide
Web Conference, Computer Networks and ISDN
Systems, vol. 27, num. 6, pp. 831-840, April 1995.

[16] G. Ramalingam and T. Reps, “A categorized
bibliography on incremental computation”, In
Conference Record of 20th Annual ACM
Symposium on Principles of Programming
Languages, pages 502-510, ACM, New York, Jan
1993.

[17] T. Reps, T. Teitelbaum and A. Demers,
“Incremental context-dependent analysis for
language-based editors”, ACM Trans. Program.
Languages System, vol. 5, num 3, pp. 449-477,
July 1983.

[18] SoftQuad, “XMetal 2.0”, 2000.
http://www.xmetal.com/

[19] Vervet Logic, “XML Pro v2”, 2000.
http://www.vervet.com/

[20] L. Villard, C. Roisin and N. Layaïda, “A XML-
based multimedia document processing model for
content adaptation”, In Proceeding of Digital
Documents and Electronic Publishing (DDEP00),
2000.

[21] N. Walsh, “XSL DocBook Stylesheets”,
http://nwalsh.com/docbook/xsl/index.html, 30
January 2001.

[22] WhiteHill, "<xsl>Composer", 2001.
http://www.whitehill.com/

[23] “XML Path Language (XPath)”, J. Clark and S.
DeRose, W3C Recommendation, available
http://www.w3.org/TR/xpath.html, 16 November
1999.

[24] “XSL Transformations (XSLT)”, J. Clark, W3C
Recommendation, available at
http://www.w3.org/TR/xslt, 16 November 1999.

ANNEX A
1. <?xml version="1.0" encoding="ISO-8859-1"?>
2.
3. <xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transfor
m">

4. <xsl:output method="html"/>
5.
6. <xsl:param name="toc.depth">2</xsl:param>
7.
8. <xsl:template match="article">
9. <html>
10. <body>
11. <p align="center">
12. <xsl:value-of

select="artheader/authorgroup/author/firstname"/>
13. <xsl:text> </xsl:text>
14. <xsl:value-of

select="artheader/authorgroup/author/lastname"/>
15. <xsl:text>Presents</xsl:text>
16. </p>
17. <h1 align="center"><xsl:value-of

select="title"/></h1>
18. <xsl:apply-templates select="section">
19. <xsl:with-param

name="indent">0</xsl:with-param>
20. </xsl:apply-templates>
21. <hr/>
22. <table border="1" width="100%">
23. <tr>
24. <td><xsl:apply-templates

select="artheader/authorgroup"/></td>
25. <td>Nb upper sections : <xsl:value-of

select="count(section)"/></td>
26. <td>Last modification : <xsl:value-of

select="artheader/date"/></td>
27. </tr>
28. </table>
29. </body>
30. </html>
31. </xsl:template>
32.
33. <xsl:template match="section">

34. <xsl:param name="indent">0</xsl:param>
35.
36. <xsl:variable name="heading">
37. <xsl:choose>
38. <xsl:when test="count(ancestor::section) =

0">h2</xsl:when>
39. <xsl:when test="count(ancestor::section) =

1">h3</xsl:when>
40. <xsl:when test="count(ancestor::section) =

2">h4</xsl:when>
41. <xsl:otherwise>p</xsl:otherwise>
42. </xsl:choose>
43. </xsl:variable>
44.
45. <xsl:element name="{$heading}">
46. <xsl:attribute name="align">left</xsl:attribute>
47. <xsl:attribute name="style">padding-left=
48. <xsl:value-of select="$indent"/>px
49. </xsl:attribute>
50.
51. <xsl:number value="position()" format="1."/>
52. <xsl:text> </xsl:text>
53. <xsl:value-of select="title"/>
54. </xsl:element>
55.
56. <xsl:if test="count(ancestor::section) <

$toc.depth - 1">
57. <xsl:apply-templates select="section">
58. <xsl:with-param name="number-

format">a.</xsl:with-param>
59. <xsl:with-param name="indent"

select="$indent + 100"/>
60. </xsl:apply-templates>
61. </xsl:if>
62. </xsl:template>
63.
64. <xsl:template match="authorgroup">
65. <xsl:for-each select="author">
66. <xsl:value-of select="firstname"/>
67. <xsl:text> </xsl:text>
68. <xsl:value-of select="lastname"/>
69. <xsl:choose>
70. <xsl:when test="position()=last()-

1"><xsl:text> and </xsl:text></xsl:when>
71. <xsl:when test="position() < last()-

1"><xsl:text>, </xsl:text></xsl:when>
72. <xsl:otherwise/>
73. </xsl:choose>
74. </xsl:for-each>
75. </xsl:template>

76.
77. </xsl:stylesheet>

